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There has been recent interest in the idea that principles governing learning in
connectionist networks can form the basis for an alternative understanding of develop-
mental processes (Elman, Bates, Karmiloff-Smith, Johnson, Parisi, & Plunkett, 1996).
The present paper can be viewed as a case example of the usefulness (and limitations)
of connectionist modeling for the study of infant cognition. Specifically, the paper
reports on a series of connectionist models designed to analyze the factors responsible
for the emergence of global-level and basic-level category representations in young
infants. The models (1) simulated the formation of global-level and basic-level repre-
sentations, (2) revealed a global-to-basic order of category emergence, (3) uncovered
the formation of two distinct global-level representations—an initial ‘‘self-organiz-
ing’’ perceptual global level and a subsequently ‘‘trained’’ arbitrary (i.e., nonpercep-
tual) global level, and (4) displayed a gradual transition from perceptual global-level
to perceptual basic-level representation with increasing exposure to training stimuli.
Hypotheses for empirical investigations of category development in infants that follow
from the modeling efforts are discussed. q 1997 Academic Press

A number of investigators interested in early cognitive development have
been examining the origins and development of complex category representa-
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237CONNECTIONIST MODELING OF INFANT CATEGORIZATION

tions during the first two years of life (e.g., Mandler, Bauer, & McDonough,
1991; Mervis, 1987; Quinn, Eimas, & Rosenkrantz, 1993). Empirical efforts
have been focused on the age and means by which individuated representa-
tions can be formed for basic-level categories (e.g., cats, chairs) from the
same global-level structure (e.g., mammal, furniture). There has also been
concern with whether early basic-level representations cohere to form global-
level representations or whether basic-level representations evolve from origi-
nal global-level representations. Much of this work has been in response to
the theory of Rosch and Mervis which suggested that categories were initially
formed at the basic level and that superordinate categories developed later
when the infant grouped together separate basic-level representations (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976; but see Keil, 1979, and Mand-
ler & Bauer, 1988, for evidence to the contrary; see also Mervis, 1987, for
a revision of the original theory).

One series of studies relevant to these issues has shown that young infants
participating in the familiarization–novelty preference procedure can form
category representations at both basic and global levels of exclusiveness
(reviewed in Quinn, in press; Quinn & Eimas, 1996b). At the basic level, for
example, 3- to 4-month-olds familiarized with domestic cats will generalize
their familiarization to novel cats, but dishabituate to birds, horses, dogs,
tigers, and even female lions (Eimas & Quinn, 1994; Eimas, Quinn, & Cowan,
1994; Quinn & Eimas, 1996a; Quinn, Eimas, & Rosenkrantz, 1993). The data
provide evidence that the infants can form a category representation for cats
that includes novel cats, but excludes exemplars chosen from a variety of
related basic-level categories. Behl-Chadha (1996) has extended these findings
to human-made artifacts by showing that 3- to 4-month-olds can also form
individuated representations for chairs and couches each of which exclude
instances of the other as well as beds and tables.

At the global level, 3- and 4-month-olds familiarized with instances from
a number of mammal categories (e.g., cats, dogs, tigers, rabbits, zebras, ele-
phants) generalized their familiarization to novel mammal categories (e.g.,
deer), but dishabituated to instances of birds, fish, and furniture (Behl-Chadha,
Eimas, & Quinn, 1995; Behl-Chadha, 1996). These results indicate that the
infants can form a global-level representation of mammals that includes novel
mammal categories, but excludes instances of nonmammalian animals (i.e.,
birds and fish) and human-made artifacts (e.g., furniture). In the same series
of experiments, Behl-Chadha obtained evidence that 3- to 4-month-olds can
also form a global-level representation for furniture that includes beds, chairs,
couches, cabinets, dressers, and tables, but excludes the mammals mentioned
above (although possibly not vehicles). The evidence thus suggests that young
infants can form global-level representations for at least some natural (i.e.,
mammals) and artifactual (i.e., furniture) categories.

Of interest is the information that enables infants to form category represen-
tations at the basic and global levels in these studies. The age of the subjects
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238 QUINN AND JOHNSON

and the nature of the stimuli (i.e., static pictorial instances of the categories)
make it improbable that the infants are relying on conceptual knowledge
about the ‘‘kind of thing’’ something is to perform successfully in these tasks
(cf. Mandler & McDonough, 1993). The studies therefore support the position
that both basic and global levels of representation can have a perceptual basis.

Given this state of affairs, at least two important questions remain at issue.
First, what representations might be utilized by young infants in the formation
of categories? Second, on the basis of the data now available, can we predict
the course of category development in even younger infants? That is, do the
original category representations formed by infants have relatively broad,
global extensions or are they more narrowly tuned—perhaps nearly adult
‘‘basic’’ in their range of exclusiveness?

To examine these issues in a more formal way than has been done in the
past, we have been exploring the emergence of basic-level and global-level
category representations in connectionist learning systems. Using as input
the measured dimensions of stimuli employed in the familiarization–novelty
preference experiments cited above and an input scheme that corresponds
with one that has been gaining acceptance among investigators of object
recognition (Zhu & Yuille, 1996), we report that a series of connectionist
networks relying on a three-layered network architecture (i.e., input r hidden
layer r output) produce both basic-level and global-level category representa-
tions, and that global-level categories (e.g., mammals, furniture) usually pre-
cede basic-level categories (e.g., cats, tables) in order of appearance. After
presenting a brief review of the major features of the connectionist approach,
we consider the performance of these models in detail and examine the reasons
for global-level and basic-level category formation and the observed global-
to-basic learning sequence.

Since the publication of McClelland and Rumelhart’s Parallel Distributed
Processing, Explorations in the Microstructure of Cognition, Volumes 1 and
2 (McClelland & Rumelhart, 1986a, 1986b), connectionist models have been
gaining in influence and are now viewed by many as a promising level of
analysis by which to explain cognition and its development (e.g., Clark, 1993;
Karmiloff-Smith, 1992a, 1992b; McClelland, 1989; Plunkett & Sinha, 1992).
While connectionist models are not incompatible with symbolic models of
cognitive functioning and some have argued that complementarities may lead
to the development of hybrid models (Clark & Karmiloff-Smith, 1993; Mand-
ler, in press), others have hinted that connectionist models may eventually
replace symbolic accounts of cognition (see, for example, the discussion in
Smolensky, 1988). Connectionist models may in some instances bring forth
levels of detail and precision not present in more classical, introspectionist,
verbal descriptions of behavior. Such details may be critical to the eventual
realization of a theory of the microstructure of cognition.

Connectionist models have as their basic building blocks neuron-like enti-
ties called processing units that compute by way of connections with each

AID JECP 2385 / ad10$$$102 07-18-97 08:45:39 jecpa AP: JECP



239CONNECTIONIST MODELING OF INFANT CATEGORIZATION

FIG. 1. An example of a 3-layered connectionist architecture showing input, hidden, and
output units and the pattern of connectivity between them.

other (see, Crick, 1989, however, for discussion of how processing units
are unlike neurons). In most connectionist models, the processing units are
hierarchically organized into several layers including an input layer, one or
more hidden layers for purposes of internal representation, and an output
layer. The architecture of the model is in part determined by the pattern of
connectivity of the units within and between the levels. An example of a
fully connected input r hidden layer r output network architecture is shown
in Fig. 1.

Representations in connectionist models are patterns of activation over the
units in the network. As shown in Fig. 2, a single unit’s activation is based
on two components: the net input to the unit and the activation function of
the unit. The net input to a unit is calculated as a weighted sum of the inputs
to the unit from the environment or other units. The contribution of each unit
to the net input is weighted by the strength of the connection from contributing
to receiving unit. The activation function is then used to determine the re-
sulting activity of the unit given the net input—activity that will then be
passed forward along output connections.

Processing in a connectionist model occurs through changes in the units’
patterns of activation over time. These changes are in turn dependent on
changes in the strengths of the connections between units. Connection
strengths in many neural networks are initially random values and change as
a function of experience with structured input according to a learning algo-
rithm. We used a learning rule known as backpropagation or the generalized
delta rule (Rumelhart, Hinton, & Williams, 1986). Backpropagation can be
used when the job of the network is to map a set of inputs onto a set of
outputs (as is the case in categorization tasks) and was devised to work in
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240 QUINN AND JOHNSON

FIG. 2. An illustration of the flow of activation into and out of a unit and how the net
activation of the unit is dependent on (1) the net input to the unit and (2) the activation function,
f(net), of the unit.

particular with networks that have at least one layer of hidden units. The task
facing the network is to move from a starting point of arbitrary random
weights to an eventual configuration of weights that produces the desired
output activations. During the course of training, each time an input is pro-
cessed through the model to produce a pattern of output activations, these
activations are compared with the desired output activations. When differ-
ences between actual and desired activations occur on any of the output units,
the connection strengths coming into those units are gradually adjusted in
directions that reduce the error. The error signals for the various output units
are then backpropagated through lower layers of hidden units so that error
reducing adjustments in connections strengths can be made throughout the
network.

From a developmental standpoint, connectionist models have appeal be-
cause they are composed of a small set of simple processing mechanisms
from which both qualitative and quantitative predictions can be generated
(Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996). Connec-
tionist models also have the advantage that they can account for apparent
discontinuities in the development of cognitive abilities without recourse to
qualitative changes in processes or representations (McClelland, 1989; Plun-
kett, Sinha, Moller, & Strandsby, 1992; but see Raijmakers, van Koten, &
Molenaar, 1996). Recent connectionist modeling efforts have begun to suggest
that mechanisms that differ in kind across development are not necessary to
explain, for example, the development of object permanence (Mareschal,
Plunkett, & Harris, 1995; Munakata, McClelland, Johnson, & Siegler, in
press) and as a result have begun to change the conventional wisdom about
the course of human cognition (Elman et al., 1996). However, whether it will
be the case that connectionist models based on principles of developmental
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241CONNECTIONIST MODELING OF INFANT CATEGORIZATION

continuity will adequately describe all facets of concept formation remains
an open question (Karmiloff-Smith, 1992a, 1992b; Mandler, in press). The
present paper can be viewed as part of an effort to explore the usefulness of
connectionist modeling in explaining an emerging and important develop-
mental finding—the formation of basic-level and global-level category repre-
sentations by young infants. We point out that while connectionist models
have a history of being used to model categorization (e.g., Feldman & Ballard,
1982; Knapp & Anderson, 1984), little work has focused on the development
of categorization (for exceptions, see Miikkulainen & Dyer, 1991, Rumel-
hart & Todd, 1993, and Schyns, 1991), and none has attempted to model the
infant’s perceptual categorization abilities.

Our primary aim in this paper is to illustrate the benefits and limitations
of applying connectionist modeling to a well-studied question in early percep-
tual–cognitive development. We do this by presenting a number of simple
connectionist models that allow us to explore the influence of intrinsic archi-
tecture and extrinsic input structure on the formation of category representa-
tions. We then discuss the extent to which the findings of our simulations
correspond to experimental data on categorization obtained from infants. In
taking this approach we do not assume that the category representations
formed by humans are merely a reflection of environmental structure, or the
product of a single learning mechanism. Rather, the category representations
that emerge in the simulations to follow are viewed by us as outcomes of the
interaction between a particular input structure and network architecture. The
category training sequences that appear in the networks should thus not be
construed as the actual time course of category learning adhered to by infants,
but as examples of what a certain class of connectionist models predict about
the developmental course of category emergence given a specific input struc-
ture. In our view, the major contribution of the simulations lies in the hypothe-
ses they generate, and relation to empirical data from infants.

SIMULATIONS PART I: GLOBAL BEFORE BASIC

Method

Network architecture and training/test stimuli. To begin, a model was
developed to examine learning of basic-level and global-level category repre-
sentations for instances of furniture and mammals. The model was a network
with 13 input nodes, 3 hidden nodes, and 10 output nodes. The input nodes
encoded 13 attributes of pictorial instances of cats, dogs, elephants, rabbits,
beds, chairs, dressers, and tables. The cat and dog stimuli were used in Eimas
et al. (1994), Quinn et al. (1993), and Quinn and Eimas (1996a), and the
elephant, rabbit, and furniture stimuli were used in the studies of Behl-Chadha
(1996) and Behl-Chadha et al. (1995). These stimuli were realistic color
photographs, each displaying an individual mammal or furniture item. They
were selected to be nearly the same size as possible so that the infant would use
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242 QUINN AND JOHNSON

cues other than size (i.e., cues believed to be more nearly category defining)
as possible bases for categorization. Three instances of each category were
randomly selected to be inputs during training. An additional instance of each
category was randomly selected for the test of generalization.

Attributes of the stimuli that served as inputs were as follows: head length,
head width, eye separation, ear separation, ear length, nose length, nose width,
mouth length, number of legs, leg length, vertical extent of mammal bodies
and furniture stimuli (exclusive of leg length), horizontal extent, and tail
length. The attributes were measured directly from the stimuli in centimeters
and then linearly scaled so that the highest value on each attribute was 1.0.
The scaling procedure involved normalizing the values of a given attribute
by dividing each value by the largest value of that attribute. Scaled values
were used instead of actual values of the attributes because we were concerned
that performance of the model might be unduly influenced by attributes with
the largest input values. If a stimulus did not possess a particular attribute,
then the value for that attribute was encoded on its respective input node as
0.0. Actual activation values assigned to the stimulus attributes for each
training and test pattern will be supplied by the corresponding author upon
request.

Parsing the input patterns into component attributes and using the attribute
values along with certain assumptions about processing to make predictions
about the formation of category representations has been used in previous
investigations of infant categorization (e.g., Sherman, 1985; Strauss, 1979;
Younger, 1990). The input attributes can be divided into two classes—those
that encoded geometric aspects of the stimuli and those that encoded aspects
of the face region of the mammal stimuli. The coding of geometric aspects
of the stimuli corresponds with the ‘‘skeleton extraction’’ model of object
recognition recently proposed by Zhu and Yuille (1996). In referring to geo-
metric input attributes with labels such as ‘‘number of legs’’ and ‘‘leg length,’’
we do not mean to imply that the infant has a conceptual understanding of
such attributes. The input attributes were all measurable dimensions of the
surface properties of the stimuli, and as such, potentially available to low-
level visual parsing routines that segment a skeleton outline of a shape’s
silhouette into a number of component attributes.

The large number and detailed nature of attributes from the facial region
were selected on the basis of evidence that infants are highly attracted to
facial configuration information (e.g., Johnson & Morton, 1991). There are
also psychophysical and neurophysiological data suggesting that at least some
of the face and head attributes in the input scheme may be used in face
recognition (Rhodes, 1988; Yamane, Kaji, & Kawano, 1988; Young & Ya-
mane, 1992). Furthermore, there are data indicating that young infants use
information from the face and head region of cats and dogs to categorically
distinguish between them (Quinn & Eimas, 1996a). For example, infants
familiarized with cat stimuli in which only the face and head region was
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243CONNECTIONIST MODELING OF INFANT CATEGORIZATION

visible (the body information had been occluded), preferred novel dog faces
over novel cat faces. However, infants familiarized with cat stimuli in which
only the body information was visible (the face and head region was oc-
cluded), looked equivalently to novel dog and cat bodies. Subsequent control
experiments revealed that the dog preference in the ‘‘face and head visible’’
group could not be attributed to a spontaneous preference for dog faces or
to an inability to discriminate among the cat faces. Facial information would
thus seem to provide infants with a necessary and sufficient basis to form a
category representation for cats that excludes dogs. Quinn and Eimas also
showed that the cues for this category representation of cats resided in the
internal facial region (inclusive of the eyes, nose, and mouth) and along the
external contour of the head.

Ten output nodes were responsible for indicating the basic-level and global-
level category identity of the stimuli: cat, dog, elephant, rabbit, bed, chair,
dresser, table, mammal, and furniture. Each stimulus was associated with 2
of the 10 output nodes, one for the basic level, the other for the global level.
Given that the range of activation of the units in the network was from 0.0
to 1.0, the network was considered to have correctly recognized the basic-
level or global-level category identity for a given stimulus if it activated the
basic-level or global-level output node associated with that stimulus to a value
greater than 0.50 and activated the output nodes corresponding to stimuli
from other categories to values less than 0.50.

Three hidden nodes were chosen on the basis that this would be the mini-
mum number needed to represent 8 different categories at the basic level.
Each hidden node received input from all 13 input nodes and each hidden
node in turn sent output to all 10 output nodes. The purpose of the hidden
nodes is to re-represent (and in this case to compress) the information from
the input patterns into an efficient coding scheme.

Training and testing procedure. Training consisted of presentation of the
24 stimuli in a random order with replacement (as determined by a random
seed) for 7200 training sweeps (one sweep equal to one presentation of a
single stimulus pattern). Each stimulus was presented to the network by
feeding in its attribute values to the appropriate units across the input layer.
Testing for generalization to novel members of the training categories con-
sisted of one presentation of a novel exemplar from each category.

Implementation. The simulations were run on the neural network simula-
tor called tlearn (Plunkett & Elman, 1997). tlearn makes use of the back-
propagation learning algorithm described earlier (for a more detailed expla-
nation, see Rumelhart et al., 1986). The network simulation reported in
this section of the paper was trained with a random seed (RS) of 47, a
learning rate (LR) of 0.3, and a momentum (M) of 0.7. The values of LR
and M were chosen through pilot simulations because they yielded optimal
category learning. It is important to note that each simulation reported was
conducted with two additional random seeds and in each case the same
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244 QUINN AND JOHNSON

FIG. 3. Root mean square (RMS) error of the initial network reported in Part I as a function
of training sweeps. Category labels along the sweep axis are positioned to show the categories
that have emerged at 120, 960, 3600, and 7200 sweeps.

overall results were obtained with only minor variations. Thus, while we
present data from one random seed in detail, the basic results are ex-
tendable to a variety of starting seeds.

Results and Discussion

Performance of the network is shown in Fig. 3. In this figure, a measure
of global error known as the root mean square error or RMS (which reflects
the discrepancy between actual and correct response to a given input) is
plotted as a function of training sweeps. As can be seen, performance of the
model improved with increases in the number of training sweeps. Error reduc-
tion proceeded quickly over the first few hundred sweeps and was more
gradual thereafter.

Category learning was initially manifest at 120 sweeps with the global-
level distinction between mammals and furniture emerging for both train-
ing and test stimuli. At 960 sweeps the elephant training exemplars were
learned, although the novel elephant did not yet elicit generalization. By
3600 sweeps, the cat, dog, rabbit, and elephant training and test exemplars
were all categorized. The network also performed correctly on table, bed,
and dresser training exemplars, and generalized appropriately to novel
instances of each. Learning was completed at 7200 sweeps when the train-
ing and test instances of chairs were correctly categorized. The results of
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245CONNECTIONIST MODELING OF INFANT CATEGORIZATION

the simulation are consistent with the findings that young infants, 3 to 4
months of age, can form perceptually based category representations for
mammals and furniture at both global and basic levels (Behl-Chadha, 1996;
Quinn & Eimas, 1996b). The complete learning sequence is also consistent
with a developmental progression from global category distinctions to
more basic ones, a pattern of learning which corresponds with the develop-
mental course of category acquisition in older infants, but with what were
presumed to be conceptually based representations for animals and artifacts
(e.g., Mandler et al., 1991; Mandler & McDonough, 1993).

It is interesting to consider the representations of the input patterns that
emerged on the hidden units. The activity of the hidden units can best be
summarized by examining the mean activation values corresponding to
each category at different points during training. Figure 4 presents a 3-
dimensional plot of the mean activation values on hidden nodes 1, 2, and
3 (relabeled as X, Y, and Z) generated by the 8 categories of stimuli at
two points near the beginning of training and a third point at the end of
training. Across the plots, each category corresponds to a point which
moves within a stationary three-dimensional cube during the course of
network learning as the internal representation of the category changes.
Panel A (left) shows that at 8 sweeps, all 8 categories cluster closely
together. Panel B (center) shows that at 480 sweeps, only mammals and
furniture were segregated. Finally, Panel C (right) reveals that at 7200
sweeps mammals and furniture were segregated along the z-axis and each
basic-level category had its own location within the ‘‘mammal’’ and ‘‘fur-
niture’’ planes. Figure 4 thus provides an instructive example of how
category structure emerges over time on the representational units.

Another connectionist model that has revealed a similar time course of
category learning from general to more specific levels is that of Rumelhart
and Todd (1993; also discussed in McClelland, McNaughton, & O’Reilly,
1995). Plants and animals were learned before trees and birds which were
learned before oaks and robins. However, this model discovered ‘‘concep-
tual’’ structure by learning a set of propositional statements about concepts,
‘‘rather than by percepts that directly provide some information about the
concepts’’ (McClelland et al., p. 428). For example, the network learned that
a canary ‘‘is living,’’ ‘‘can grow,’’ ‘‘has skin,’’ and ‘‘can sing,’’ whereas an
oak tree ‘‘is living,’’ ‘‘can grow,’’ ‘‘has bark,’’ and ‘‘has roots.’’ These
attributes are conceptually rich, and we cannot assume that a young infant
would be able to use them in initial encounters with members of the animal
and plant categories. Thus, a critical contribution of our simulation is to show
that the general to specific trend in the development of category representa-
tions can be obtained even when the network is operating on the kind of
perceptually based input that is presumably available to a young infant.

An additional connectionist simulation that has produced a general to spe-
cific trend in the development of category representations is that of Schyns
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247CONNECTIONIST MODELING OF INFANT CATEGORIZATION

(1991). While Schyns did not directly address the question of the develop-
mental ordering of global-level vs basic-level categories, he did use a Kohonen
(1984) self-organizing network to show that basic-level categories such as
‘‘bird’’ were learned before subordinate-level categories such as ‘‘robin’’ and
‘‘crow.’’ However, the stimuli that Schyns used as input to represent ‘‘natu-
ral’’ categories such as ‘‘bird’’ and ‘‘dog’’ were in fact categories constructed
from dot patterns that were distortions of arbitrary prototypes (Posner &
Keele, 1968). While this work helps us understand the similarity relations
discovered by an unsupervised learning algorithm, it is less informative about
how the categorization routines of infants might perform on realistic exem-
plars of naturally contrasting categories.

SIMULATIONS PART II: NO FACE–NO TAIL NETWORK

In the initial simulation the coarse category distinction between mammals
and furniture was learned before the more fined-grained distinctions at the
basic level. This may simply be because the model responded to the fact that
the mammals provided activation on the various input nodes devoted to the
processing of face and tail information, whereas the furniture stimuli did not.
That is, activation of the face and tail inputs (or lack thereof) provided the
basis for the mammal-furniture distinction (see, Rakison, 1996, and Rakison &
Butterworth, in press, for evidence that infant responding to global category
distinctions may be based on the representation of salient part differences).
For this reason, it is of interest to learn how the network will perform without
information from the face and tail regions of the mammal stimuli. We there-
fore conducted an additional simulation with a network containing 4 input
units, 3 hidden units, and 10 output units. For this model, training and testing
occurred with the same stimuli used in the initial simulation, but in this case
the inputs were restricted to number of legs, leg length, vertical extent, and
horizontal extent, thereby insuring that no zero values occurred among the
input attributes. The network was trained with the random seed used in the
first simulation, a similar learning rate of 0.2 and a smaller momentum of
0.3. Different parameter settings were used in the present simulations to
accommodate the smaller number of input nodes.

Category learning began in the ‘‘No Face–No Tail’’ simulation at 3600
sweeps with dressers responded to as furniture, but not as dressers. By 7200
sweeps, the global-level categories (both training and test instances) were
differentiated; only the basic-level category of dressers had appeared by this
point. Basic-level category recognition of training and test instances of rabbits
and tables (14,400 sweeps), elephants (21,600 sweeps), chairs (28,800
sweeps), and beds (43,200 sweeps) completed the learning sequence. Dogs
and cats were not recognized as distinct basic-level categories in this simula-
tion. This model thus learned the global-level category identity of the entire
set of input and test patterns, but learned the basic-level category identity for
only a subset of the patterns—a result indicating that the global-level advan-
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tage is observed even when face and tail information from the mammal
stimuli is not provided as input. The global-level advantage and the failure
to distinguish dogs and cats were also obtained with two additional random
seeds. The outcome of these simulations corresponds well with the findings
of Quinn and Eimas (1996a) who showed that young infants require informa-
tion from the head and face region to make the basic-level category distinction
between cats and dogs. The global-level category precedence observed in
these simulations is moreover suggestive that the global-to-basic sequence is
not entirely a consequence of specialized processing for mammals and that
it may be generalizable beyond the mammal–furniture distinction.

When comparing the simulations reported in Parts I and II (those performed
with and without face and tail information), one may note that the acquisition
of the global-level categories occurred by 120 and 7200 sweeps with and
without face and tail information, respectively. That is, acquisition of the
global-level categories took 60 times longer when the face and tail features
were not present. One may be tempted to conclude from this result that
categorization of mammals and furniture by networks (and possibly by in-
fants) is more difficult without face and tail information. While we favor this
interpretation (see discussion in Simulations Part III below), one needs to
keep in mind that the two simulations are not directly comparable because
the simulation conducted without face and tail information was performed
with lower values for learning rate and momentum (to accommodate the
smaller number of input nodes). As such, at least some of the rate difference
in the learning of global-level categories in the two networks may be attribut-
able to the smaller parameter settings. The most reasonable conclusions from
Simulations Part I and II would thus appear to be that global-level category
differentiation (1) is still possible without face and tail information, but (2)
may be more difficult and thus proceed more slowly without face and tail
information.

SIMULATIONS PART III: NETWORK WITHOUT GLOBAL-LEVEL
CATEGORY TRAINING

A second issue raised by the finding of global-to-basic category develop-
ment is whether the global level would have emerged before the basic
level if the network had not been trained to assign each of the various
inputs to either the mammal or furniture global-level categories. To answer
this question, we repeated the initial simulation reported in Part I, but in
this case without the two global-level output nodes. There was thus no
teaching signal at the global level. While this manipulation prevents us
from determining whether the patterns were responded to as mammals and
furniture at the output layer, we can still inspect the representation of the
patterns at the hidden layer at different points during training. It should
be noted that in the simulations with global-level category output nodes
and hidden nodes, the emergence of global-level categories as measured

AID JECP 2385 / ad10$$$103 07-18-97 08:45:39 jecpa AP: JECP



249CONNECTIONIST MODELING OF INFANT CATEGORIZATION

by activation values on the global-level category output nodes occurred
when there was differentiation of these categories on at least one of the
hidden nodes. We therefore believe that inspection of hidden node activa-
tions is a reasonable way of assessing representation of global-level catego-
ries in a network without global-level category output nodes.

What is observed in the model is that the global level of representation
still emerges before the basic level. At 480 sweeps, the mean activation values
for cats, dogs, elephants, and rabbits on hidden node 1 were 0.191, 0.160,
0.084, and 0.212, whereas those for chairs, tables, beds, and dressers were
0.816, 0.795, 0.833, and 0.831. This global-level separation was maintained
throughout the remainder of training. In contrast, hidden nodes 2 and 3 at
480 sweeps did not allow for partitioning of inputs into basic-level categories.
Basic-level categories were learned later in the training sequence (as assessed
by their corresponding output activation values): elephants were distinguished
at 960 sweeps, followed by dogs, rabbits, chairs, and dressers at 3600 sweeps,
beds at 7200 sweeps, and cats and tables at 10,800 sweeps. The results of
this simulation (replicated with two other random seeds) are important because
they suggest that the early appearance of global-level categories occurs even
when the network is not being trained at the global level. The global level
might thus be thought of as a ‘‘primary’’ representation that occurs in the
course of mapping a set of categorically structured inputs onto eventual basic-
level representations.

A question that arises based on the simulations already reported in Parts
II and III is whether the global level would emerge before the basic level
without global-level category training and without face and tail information.
To answer this question, another simulation was performed with a network
containing only 4 input units (number of legs, leg length, vertical extent, and
horizontal extent), 3 hidden units, and 8 output units (one corresponding to
each of the basic-level categories). This network was trained with the same
random seed and parameter values used in the simulation reported in Part II.
Learning in the network began with beds and dressers (7200 sweeps), contin-
ued with tables (14,400 sweeps), rabbits and chairs (21,600 sweeps), and
concluded with elephants (28,800). Dogs and cats were not differentiated by
this network. Perhaps more importantly, global-level category differentiation
of mammals and furniture did not emerge on any of the hidden units during
the course of training. What this result indicates is that the early appearance
of the mammal and furniture global-level categories in the initial simulation
conducted in Part III, that performed without global-level training, is likely
due to presence vs. absence of face and tail attribute information. Such net-
work performance is consistent with recent empirical work indicating that
infants can form global-level category representations, but only when the
exemplars are presented so as to preserve salient attribute differences between
the categories (Rakison, 1996; Rakison & Butterworth, in press).

Thus far in the paper, we have presented (1) a series of simulations with

AID JECP 2385 / ad10$$$103 07-18-97 08:45:39 jecpa AP: JECP



250 QUINN AND JOHNSON

different architectures and training stimuli that resulted in learning of global-
level categories before basic-level ones (with one exception), an outcome of
theoretical significance given the traditional basic-to-superordinate view
(Rosch et al., 1976), and (2) gained some insight into reasons for the early
appearance of the global level (e.g., salient attribute differences between
global-level categories). In the next two sections, we further explore possible
reasons for the global-to-basic learning sequence.

SIMULATIONS PART IV: ARBITRARY GLOBAL-LEVEL
CATEGORY LEARNING

An idea hinted at in Parts II and III is that global occurs before basic
because global-level category formation requires a coarser ‘‘cut’’ of the input
dimensions than does basic-level category formation. By this view, global-
level categories are learned as an initial step on the path to basic-level category
learning. This idea can be tested by orthogonalizing (i.e., crossing) the stimu-
lus dimensions relevant for the global level. That is, one can change the
nature of the categories at the global level from perceptual to arbitrary and
determine if the global-to-basic trend still emerges. To this end, we examined
the performance of two networks taught to assign cats, elephants, chairs, and
beds to one arbitrary global-level category which we will call A and to
respond to dogs, rabbits, tables, and dressers as members of a second arbitrary
global-level category called B.

Method

The network architecture, stimuli, and training/testing procedures (in-
cluding parameters) were the same as those used in the initial round of
simulations reported in Part I. The only change was that the output node
previously coding for mammals was reassigned to code for A stimuli (cats,
elephants, chairs, and beds) and the output node that earlier coded for
furniture now coded for B stimuli (dogs, rabbits, tables, and dressers).
The major results, namely, the difficulty of learning arbitrary global-level
categories and the early appearance of perceptual global-level categories,
were observed with 2 additional random seeds.

Results and Discussion

In the model, learning occurred at both basic and arbitrary global levels,
but without one level clearly preceding the other. At the basic level, the order
of classification of the training exemplars was as follows: elephants (960
sweeps), rabbits (1920 sweeps), cats and dressers (2760 sweeps), and dogs,
tables, and beds (3600 sweeps). The training instances of chairs, even at 7200
sweeps, failed to elicit a consistent response from the appropriate output node.
Learning at the arbitrary global level was also first observed at 960 sweeps
with elephants activating the A output node and dogs, rabbits, and dressers
activating B. Arbitrary global-level classification continued as cats (1920
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sweeps) and chairs and beds (3600 sweeps) activated the A output node, and
concluded with tables recognized as members of the B category (7200
sweeps). Thus, in this network, both arbitrary global-level and basic-level
categories were learned, but in no particular order.

A more complex picture regarding performance of the model emerges when
one examines the mean activation values on the 3 hidden nodes for the various
categories. Figure 5 presents a 3-dimensional plot of these values at 8, 480,
and 7200 sweeps. The 8 sweeps plot (Panel A) reveals no clear partitioning
of the 8 categories. However, at 480 sweeps (Panel B), the mammals and
furniture have been segregated. This result indicates that perceptual global-
level categories emerged even when the network was being taught on an
arbitrary (i.e., nonperceptual) global-level distinction—a finding consistent
with the perceptual global-level emergence in the earlier model conducted
with the full set of inputs, but without global-level output nodes. The mean
activation values for each category at 7200 sweeps (Panel C) have been
connected in two ways to show that while the perceptual global-level category
distinction between mammals and furniture was preserved (top display), the
arbitrary global-level differentiation into categories A and B also emerged
(bottom display). This analysis indicates that the hidden nodes have coded
for two distinct global levels of representation using exactly the same mecha-
nism for both: an initial perceptually based global level and a subsequent
arbitrary global level. The extent to which the latter might relate to a conceptu-
ally based global level (cf. Mandler, 1997) is examined in the General
Discussion.

The major finding from this simulation is that changing the nature of the
global level categories interfered with the global-to-basic order of category
development at least for the arbitrary global categories. No clear timing differ-
ence was observed in the emergence of representations at the basic level and
arbitrary global level. However, it was of interest to again find that the
perceptual global level (i.e., mammals distinct from furniture) was the first
level of category representation to appear, even though the network was not
explicitly taught to make this distinction. It should be acknowledged that the
early appearance of the perceptual global level in this simulation was depen-
dent on providing the network with the entire set of input attributes. When
the global crossover simulation was repeated using the no face–no tail input
scheme, the perceptual global level did not emerge. The overall pattern of
results indicates that the nature of global categories (i.e., perceptual vs arbi-
trary) is a critical factor in their early appearance in the simulations.

The fact that perceptually based global-level representations for mammals
and furniture emerge first in a model in which the perceptually-based global
level was not explicitly taught lends further support to the suggestion that
perceptual global-level categories may be a necessary intermediate representa-
tion on route from structured (but uncategorized) inputs to perceptual basic-
level categories (under certain input schemes). This suggestion could be fur-
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ther strengthened if it could be shown that the perceptual global level does
not appear on route to the arbitrary global level when there is no training on
basic-level categories—a learning sequence that can be tested by running the
Global Crossover simulation again, but in this instance without the basic-
level category output nodes. The model thus consists of 13 input nodes, 3
hidden nodes, and 2 output nodes, one for category A, the other for category
B. The simulation was run with the same training parameters and random
seeds as those used in the Global Crossover case. In each instance, the arbi-
trary global-level categories A and B were learned by 7200 sweeps. Notably,
at no time during training did any of the 3 hidden nodes code for the perceptual
global-level distinction between mammals and furniture. The results are thus
consistent with the idea that with naturally clustered input sets, perceptual
global-level categories emerge early and automatically, and as necessary pre-
cursors to perceptual basic-level categories.

It also does not appear to be the case that perceptual global-level categories
are necessary precursors of arbitrary basic-level categories. Although natural
basic-level categories have been presumed to be perceptually based (e.g.,
Rosch et al., 1976), others have sought to demonstrate the existence of ‘‘basic-
like’’ category representations for objects that have no clear perceptual basis
(e.g., the ad hoc categories of Barsalou, 1983). We therefore examined
whether a network would form perceptual global-level categories on route to
arbitrary basic-level categories (i.e., categories that violate the correlational
structure of the environment). The network had 13 input nodes, 4 hidden
nodes, and 6 arbitrary basic-level output nodes. Each arbitrary basic-level
category consisted of 2 mammals and 2 furniture items (Category 1: Cat1,
Rabbit3, Chair2, Bed1; Category 2: Dog3, Elephant2, Table1, Dresser1; Cate-
gory 3: Cat2, Elephant1, Chair1, Table3; etc.). After 14,400 training sweeps,
the model learned all 6 arbitrary basic-level categories, but at no time did any
of the hidden nodes code for the perceptual global-level category distinction
between mammals and furniture. It thus does not appear that perceptual
global-level categories are formed on route to arbitrary basic-level categories.
The evidence continues to point to the idea that perceptual global-level catego-
ries may be formed only on the path to perceptual basic-level categories.

SIMULATIONS PART V: NUMBER OF HIDDEN NODES

As a second line of inquiry into the global-to-basic developmental trend,
we examined the relation between the number of hidden nodes and the order
in which category representations emerge in the network. In general, hidden
nodes represent combinations of input attributes and potentially more abstract
aspects of the input patterns. In this sense, hidden nodes are said to create
internal representations of the input patterns. The presence of one or more
hidden nodes is in fact critical to solving certain types of problems in which
the similarity structure of the input differs greatly from that of the output
(Minsky & Papert, 1969; Rumelhart et al., 1986). For example, hidden nodes
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are necessary to solve the classic XOR logic problem because they can repre-
sent conjunctions of inputs and thereby change the similarity structure of
those inputs sufficiently to allow a solution to be learned.

Thus far in the paper, the global-to-basic results we have reported emerged
from a network architecture with 3 hidden nodes. It is possible, however, that
at some higher number of hidden nodes, the order in which global-level
and basic-level representations emerge may be different. In the final set of
simulations, we investigated whether the global-to-basic learning sequence
would hold up when the number of hidden nodes matched or exceeded the
total number of categories to be represented.

Method

The only change in the network architecture compared with that used in
the initial round of simulations reported in Part I was to increase the number
of hidden nodes to 10 and 11 (given that 2 global / 8 basic Å 10 total
categories). The stimuli, training parameters, and generalization testing proce-
dures remained unchanged, and the major result (i.e., global-to-basic categori-
zation) was obtained with 2 additional random seeds.

Results and Discussion

In the network with 10 hidden nodes, classification began with the distinc-
tion between mammals and furniture at 120 sweeps, followed by cats, ele-
phants, and tables (480 sweeps), rabbits, dogs, and dressers (960 sweeps),
and beds and chairs (3600 sweeps). Performance of the network with 11
hidden nodes was comparable with differentiation of mammals and furniture
again emerging at 120 sweeps and basic level categories appearing thereafter.
Both networks provide evidence that the global-to-basic sequence of category
learning does not depend on a specific number of hidden nodes.

We further questioned whether the global-to-basic learning sequence would
hold up in a network in which the number of hidden nodes matched the
number of basic-level category output nodes and there were no global-level
category output nodes. We therefore trained a network with 13 input nodes,
8 hidden nodes, and 8 output nodes (one for each of the 8 basic-level catego-
ries). The simulation was conducted with the same training parameters and
random seed used for the networks with 10 and 11 hidden nodes. The results
showed that the global-level distinction emerged on 3 of the 8 hidden nodes
by 120 sweeps, a point at which the network had not yet successfully distin-
guished any of the basic-level categories. This finding, replicated with 2
other random seeds, indicates that category representations at the global level
precede those at the basic level even when the global-level categories are not
taught and the number of hidden nodes matches the number of basic-level
representations the network must form. Moreover, the finding provides addi-
tional support for the idea that with naturally clustered input sets, the learning
route to the perceptual basic level passes through the perceptual global level.
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TABLE 1
Number of Hidden Nodes Coding for the Global-Level Distinction between Mammals

and Furniture in the Networks of Part V

Number of hidden nodes coding the global-level
category distinction

Total number of hidden nodes in the network
Number of

Training Sweeps 8 10 11

120 3 8 5
240 3 8 5
480 2 6 5
960 1 4 4

3,600 1 1 4
7,200 1 1 2

43,200 1 1 2

An interesting result that occurred in all three of the simulations reported
in this section of the paper is that the number of hidden nodes coding for the
global level decreased with increasing exposure to the stimulus patterns. Table
1 displays the number of hidden nodes representing the global-level distinction
between mammals and furniture at a number of different points during train-
ing. One can observe that the global level is represented from early in the
learning sequence, but that the number of hidden nodes coding for the global
level declines steadily. The bottom numbers obtained at 43,200 training
sweeps should make it clear, however, that the global level does not com-
pletely drop out of the overall pattern of representation. What appears to be
the case is a gradual transition to more and more of the representational
resources being devoted to coding the basic-level. As subjects begin to en-
counter objects within a domain, their initial representation of those objects
will tend toward the global level. Increasing frequency of experience with
objects in that domain results in a greater likelihood that those objects will
be represented at the basic or even subordinate levels (see also Schyns, 1991,
and Tanaka & Taylor, 1991). The hidden representations thus exhibit different
patterns of similarity over the course of training; early they reflect only
global-level categories, but later they reflect both global-level and basic-level
categories. That is to say, both types of similarity eventually come to coexist
in the same representation.

GENERAL DISCUSSION

Connectionist accounts of cognitive development are increasing in number
(Elman et al., 1996; Mareschal et al., 1995; McClelland, 1989; Munakata et
al., in press; Plunkett & Sinha, 1992; Schyns, 1991). This paper represents

AID JECP 2385 / ad10$$$104 07-18-97 08:45:39 jecpa AP: JECP



256 QUINN AND JOHNSON

one of the first attempts to apply a connectionist analysis to the issue of how
perceptual category representations may arise at basic and global levels during
early development. A series of network simulations were found to learn
categories at basic and global levels and in a global-to-basic sequence. Subse-
quent simulations revealed that the global-to-basic order was critically depen-
dent on (1) the nature of the global categories (i.e., perceptual vs arbitrary)
and (2) whether the network was trained to form perceptual basic-level catego-
ries. The order in which the categories emerged may thus be viewed as a
consequence of the interaction between a particular ‘‘external’’ environment
and a specific ‘‘internal’’ network architecture.

A striking result of the simulation reported in Part IV with arbitrary global-
level category training was that both perceptual and arbitrary global-level
categories were formed, despite there being no explicit training for the former.
This may remind some readers of the views of Mandler (in press, 1997)
who has argued for distinct perceptual and conceptual levels of category
representation in human infants. However, a key difference between our
model and the one proposed by Mandler is that in our model a single network
(and hence a single system of representation) forms both types of categories,
whereas in the Mandler view perceptual and conceptual representations are
the products of two complementary, but distinct processes (Mandler & McDo-
nough, 1993). What remains unclear in the present simulations is the precise
relation of perceptual and arbitrary (conceptual-like) global-level categories.
For example, is the arbitrary global level derived from the perceptual global
level in accord with a continuity-based model in which an initial perceptually
based representation evolves so as to assimilate more conceptual-like compo-
nents (e.g., Quinn & Eimas, 1996b)? The fact that the ‘‘global crossover’’
network maintained a representation of the perceptual global level in the
process of constructing the arbitrary global level is consistent with this view.
Alternatively, could a conceptual-like global level be formed by a mechanism
that is separate from the one used to form the perceptual global level (cf.
Mandler, 1997)? The finding that a model taught to assign stimulus patterns
only to arbitrary global-level categories (and not basic-level categories) did
not form perceptual global-level categories supports this position. Additional
computational and experimental work will clearly be needed to determine
what may turn out to be a complex set of relations between perceptual and
arbitrary (conceptual-like) global-level categories.

Hypotheses for Experiments

Models are often constructed to fit existing behavioral data. The models
reported here have performed well in this respect. Their output was broadly
consistent with findings that young infants form both global-level and basic-
level category representations (e.g., Quinn & Eimas, 1996b), and also with
more recent evidence of Rakison (1996; Rakison & Butterworth, in press)
suggesting that infants form global-level category representations on the basis
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of salient attribute differences. Models are, however, also judged by the degree
to which they can generate experimental hypotheses. We therefore offer the
following hypotheses for future empirical study:

1. The global-to-basic sequence of category emergence observed in the
initial simulation reported in Part I indicates that global-level representations
may precede basic-level representations during the course of a fixed exposure
period (e.g., single familiarization session) in which exemplars from several
basic-level categories from the same global-level category are presented. This
hypothesis can be tested with 3- to 4-month-olds, an age group that has
already demonstrated the ability to form both global-level and basic-level
category representations, albeit in separate experimental sessions (Behl-
Chadha, 1996; Quinn et al., 1993).

2. If infants display the ability to form global-level and basic-level
representations in a global-to-basic order under one set of task conditions
during a single familiarization session, it may be possible to manipulate
task parameters that will make categorization more difficult and observe
that basic-level representations are affected to a greater degree than those
at the global level. For example, reducing the amount of time an infant is
exposed to a stimulus decreases its memorability (Fagan, 1974; Cornell,
1979), so reducing the amount of familiarization time for each of a group
of exemplars should make categorization more difficult. The reported sim-
ulations suggest that basic-level category distinctions would be the first
to be affected by a moderate decrease in study time per exemplar. Further
reduction in study time might affect global-level distinctions as well, but
the clear implication is that the basic level would be affected before the
global level. These proposed experimental outcomes rest on the assumption
that the early-appearing representations that emerge for global-level cate-
gories will be more robust than later-appearing representations for basic-
level categories (cf. Munakata et al., in press). This assumption is sup-
ported in the current simulations by the finding that networks with multiple
hidden nodes come to represent the global level from early in the training
sequence and continue to represent that level even when the bulk of the
representational resources have shifted to the basic level.

3. The multiple hidden node simulations (those conducted with 10 or 11
hidden nodes) indicated that in the course of extended training there is a
gradual decrease in the proportion of the overall representation that codes
for the global level and a gradual increase in the proportion of the overall
representation that codes for the basic level. The findings imply that if infants
could be repeatedly familiarized with instances of a given category on succes-
sive sessions, then there may be a steady transition from global-level to basic-
level representation. The simulations also suggest that real-world entities that
infants experience on a frequent basis may tend to elicit basic-level re-
sponding, albeit subsequent to global-level responding (for corroborating evi-
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dence, see Mandler & McDonough, 1993; see also reports of basic-level
superiority in older subjects, Horton & Markman, 1980; Mervis & Crisafi,
1982; Rosch et al., 1976).

4. Both global-level and basic-level category representations have been
observed with 3- to 4-month-olds in the familiarization–novelty preference
procedure (e.g., Quinn & Eimas, 1996b). The global-to-basic sequence ob-
served in the models would therefore suggest that global-level representations
should emerge before those at the basic level sometime prior to 3 months of
age. This idea can be tested with infants in the age range between birth
and 10 weeks that are administered the familiarization–novelty preference
procedure.

5. A connectionist approach makes it possible to train models with one or
more lesioned input nodes and examine which, if any, category representations
fail to emerge. Such manipulations can be helpful in understanding aspects
of the input that may be critical for certain category distinctions. For example,
the No Face–No Tail model reported in Part II implies that face and tail
information may not be necessary for making the category distinction between
mammals and furniture, a proposal that can be tested on infants with simple
alterations to the mammal stimuli. However, the rate of learning of the global
level was slower when the face and tail information was withheld, suggesting
that infants’ distinction of furniture and ‘‘altered’’ mammal stimuli may be
more difficult and may require extra familiarization time. The role of salient
attribute differences in global-level category differentiation could be further
tested by examining the impact of attribute alterations on other global-level
category contrasts, e.g., furniture vs vehicles (cf. Rakison, 1996; Rakison &
Butterworth, in press).

6. The models presented in Part IV indicate that it may be possible to train
subjects, either infants or toddlers, to assign stimuli to arbitrary global-level
categories. If the training proceeds by also having the subjects classify the
stimuli into basic-level categories, then the simulations suggest that a percep-
tual global level of category representation will precede formation of both
arbitrary global-level categories and basic-level categories. However, if the
training on the arbitrary global level occurs without basic-level classification,
then the simulations suggest that a perceptual global level of category repre-
sentation should not be formed. An operant headturning paradigm might be
a viable training procedure by which to test these proposals (e.g., Husaim &
Cohen, 1981; Kuhl, 1979).

Concluding Comments

In our view, a strength of the approach we have presented is the correspon-
dence between the experimental work on infant categorization and the network
simulations. That is, the input to the models were the dimensions of stimuli
presented to infants in a series of studies on the development of perceptual
categorization in early infancy (reviewed in Quinn, in press; Quinn & Eimas,
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1996b). Data from the experimental studies were used in decisions about
what inputs to present to the models. Specifically, the findings that young
infants appear to use both external contour and internal feature information
from the head and face region to categorically distinguish between cats and
dogs led us to assign a number of inputs to attributes from this region of the
stimuli (Quinn & Eimas, 1996a; Quinn & Eimas, 1996c; see also, Johnson &
Morton, 1991). There is also evidence that infants use correlated attribute
information to perform successfully in various kinds of categorization tasks
(Younger, 1990, 1992)—a manner of information processing that is broadly
consistent with the way in which neural networks learn information.

A limitation of the present approach is that the visual input representations
infants (or adults) use to recognize objects are still unknown (see Husaim &
Cohen, 1981, and Kemler, 1981, for contrasting views on this issue). While
our input scheme did correspond with an object parsing scheme advocated
in one contemporary model of object recognition (Zhu & Yuille, 1996), it
becomes important to examine whether implementations of our models with
a range of input descriptions (e.g., Biederman, 1987; Marr, 1981) would
produce comparable results. In our view, incorporating additional features
into the input scheme (such as movement, texture, affect, and sound) that
might potentially be available to infants for purposes of categorization, would
serve to strengthen further the global-level superiority observed during initial
category learning. We suspect this would be so because of large differences
in attribute values at the global level relative to the basic level for the features
mentioned. We therefore believe that our basic observations on perceptual
category formation will be robust for the reason that all plausible models of
object recognition would encode greater similarity between different mam-
mals than between a mammal and an item of furniture, for example. It is this
similarity structure of the natural and artifactual objects in the environment
that we believe to be important for the results obtained, rather than the details
of what elements of the visual array are encoded in the input scheme presented
to the networks.

A second limitation is that the networks reported in this paper were trained
by a backpropagation learning algorithm—a teaching signal that drives the
gradual reduction of error observed in all of the networks. One can claim
that this manner of learning is questionable in the present context for at least
two reasons. First, there are many who would maintain that backpropagation
is a biologically unrealistic form of learning (e.g., Crick, 1989). Second,
there is no external teacher supervising infants in the perceptual kinds of
categorization tasks we have attempted to simulate.

We make three observations about this point. First, at least one level of
category representation, the perceptual global level, was obtained without
training (see simulations reported in Parts III, IV and V). Second, Plunkett
(1996) has noted that processes of cell communication at the level of the
synapse are still poorly understood and has speculated that backprojecting
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neurons might be one mechanism by which backpropagation in the nervous
system could be accomplished. Third, backpropagation is thought to be one
of an equivalence class of learning algorithms with similar computational
properties (Plunkett, 1996). Networks trained on backpropagation commonly
develop the same representations as those produced by more biologically
plausible, Hebbian learning algorithms. For example, Plaut and Shallice
(1993) lesioned a connectionist network trained with a contrastive Hebbian
learning algorithm and compared its activity to a lesioned network initially
trained with backpropagation. Both networks produced essentially the same
pattern of findings.

A third limitation of the models as presently reported is that we have not
attempted to model changes in brain structure, peripheral visual capacities
(i.e., contrast sensitivity, resolution acuity), and motor coordination, etc., that
may occur maturationally during early development. This is not to say that
connectionist modeling cannot simulate such changes through alterations to
network architecture and input structure (e.g., Elman, 1993; Oliver, John-
son, & Shrager, 1996; Schultz, 1991). While such changes undoubtedly occur
in the developing infant, in the present simulations we attempted to examine
the range of phenomena that could be accounted for without such alterations.

In conclusion, it will be important to extend many of the effects we have
observed in our simulations to other connectionist architectures, input formats,
and learning rules (including unsupervised networks). We note that some
further issues related to the development of categorization will most likely
require simulations with Hebbian self-organizing networks. For example, the
question of whether a conceptual global-level category representation can be
derived directly from a perceptual global-level category representation may
need to be resolved in this way. Despite these acknowledged limitations,
we believe that the findings of the simulations along with the experimental
predictions generated from them represent an important first step toward a
research program which combines experimental studies of infant categoriza-
tion with techniques of connectionist modeling. Such a program may hold
promise for the eventual realization of a quantitative and formalized account
of category formation by infants.
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