Course description:

This course will examine the contribution of biological and environmental determinants to individual differences in behavior and disease. Students will also be introduced to a new interdisciplinary field combining behavioral and developmental sciences, neuroscience, and psychiatry to study the roles of genes and the environment in a variety of complex behaviors in humans and animals, including attachment, memory, emotion, stress, and psychiatric disorder.

Course objectives will include:

- To understand that phenotypes (behavior and disease) are a product of both genetic and environmental influences.
- To understand the basic principles and methods used in a new interdisciplinary field (*epigenetics*) aimed at understanding gene-environment interplay in phenotypic outcome.
- To survey current clinical and basic research regarding genes, environmental influences, and their interaction on behavior and disease.

Course materials:

Additional readings are posted on the course website (Sakai). Assigned readings are mandatory and must be read prior to the class for which they are assigned.

Course format:

My lectures will cover background rationale for the course material, an introduction to specific topics, and the basic molecular biology and neuroscience necessary for understanding literature. Instructor and student led discussions of research articles will complement lecture content.

If you miss a lecture, you are responsible for obtaining lecture notes from one of your classmates.
Assessment and grading:

Your course grade will be based on a total of 425 points.

- 4 exams, each worth 75 pts
- 1 writing assignment – 50 pts
- 1 presentation – 25 pts
- Class participation – 50 pts

Exam format: multiple choice, short answer, essay.

Note: Participation points from coming to class, speaking up in class, and evaluations (you will help evaluate your peers’ presentations). You are expected to read and think about the assigned readings before each class. You are also expected to actively participate in class lecture and discussions. You cannot be an active participant if you are not here. Bottom line- come to class and bring the reading materials with you!

18 pts in-class assignments + 20 pts peer evaluations + 12 pts for regular class attendance and contribution = 50!

Grade scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100-94%</td>
<td>425-398</td>
</tr>
<tr>
<td>A-</td>
<td>93-90%</td>
<td>397-381</td>
</tr>
<tr>
<td>B+</td>
<td>89-87%</td>
<td>380-368</td>
</tr>
<tr>
<td>B</td>
<td>86-84%</td>
<td>367-355</td>
</tr>
<tr>
<td>B-</td>
<td>83-80%</td>
<td>354-338</td>
</tr>
<tr>
<td>C+</td>
<td>79-77%</td>
<td>337-326</td>
</tr>
<tr>
<td>C</td>
<td>76-74%</td>
<td>325-313</td>
</tr>
<tr>
<td>C-</td>
<td>73-70%</td>
<td>312-296</td>
</tr>
<tr>
<td>D+</td>
<td>69-67%</td>
<td>295-283</td>
</tr>
<tr>
<td>D</td>
<td>66-64%</td>
<td>282-270</td>
</tr>
<tr>
<td>D-</td>
<td>63-60%</td>
<td>269-253</td>
</tr>
<tr>
<td>F</td>
<td>59-0%</td>
<td>252-</td>
</tr>
</tbody>
</table>

Presentation:

This project has been designed to give you some experience at giving oral presentations and critically reviewing scientific research. Student led seminars will consist of a group-led detailed description of a single published research article (chosen by the instructor) describing an experiment/study related to topics in this course. Additional guidelines are available on Sakai. You will be evaluated by your peers and instructor, and your grade will be based on presentation, clarity, and your understanding of the article. Your presentation is worth 25 pts.

After the first week of class, you will be assigned a date/group for your article presentation.

Writing assignments:

This assignment has been designed to give you some experience at scientific writing, in which you will summarize a block of information in a concise, organized manner. You will need to find 1 recent (published 2011 or after) empirical (where authors have conducted an actual study/series of experiments, not a literature review) article that is relevant to any of the ideas/research we have discussed, and must be relevant to the course (i.e. examining genetic, environmental, or
epigenetic influences on behavior and disease). It cannot be one listed on the syllabus/presented in class. You will write a 2 page summary of the article, in which you will summarize the article (question addressed, overview of methods, results and conclusion) and discuss how it relates to this course and understanding biological and environmental determinants to individual differences in behavior and disease. Additional guidelines are available on Sakai.

Your summary is worth 50 pts. No late summaries accepted!

Your article summary is due: **Nov 21** – Please hand in to instructor at beginning of class, with the article attached.

Statement for students with disabilities:

Any student who thinks he/she may need an accommodation based on a disability should contact me personally as soon as possible, as well as contact the Disability Support Service (DSS) office. The DSS office is located at 119 Alison Hall, Phone: 302-831-4643, www.udel.edu/DSS.

Statement on academic integrity:

“All students must be honest and forthright in their academic studies. To falsify the results of one's research, to steal the words or ideas of another, to cheat on an assignment, or to allow or assist another to commit these acts corrupts the educational process. Students are expected to do their own work and neither give nor receive unauthorized assistance. Any violation of this standard will be reported to the Office of Student Conduct.”

Statement regarding cell phones

You are expected to silence your cell phone and stow it during class. Receiving/placing calls or texts during class is disruptive and discourteous to both the instructor and classmates. Using your cell phone during an exam will result in the immediate expulsion from the exam.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Lecturer/leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 27</td>
<td>Syllabus review</td>
<td></td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Aug 29</td>
<td>Story of David Reimer (Assignment 1)</td>
<td></td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 1</td>
<td>Labor Day- No classes</td>
<td></td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 3</td>
<td>Overview of history of nature nurture debate</td>
<td></td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 5</td>
<td>From genetics to epigenetics</td>
<td>Ch 1 & 2 (Rutter)</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 8</td>
<td>Study designs and genetic and environmental influences</td>
<td>Ch 3-5 (Rutter)</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 10</td>
<td>Study designs continued</td>
<td></td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 12</td>
<td>Institutional rearing and structural CNS changes</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 15</td>
<td>Institutional rearing and brain/behavior changes</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Sept 17</td>
<td>Heritability of phenotypes (ERPs)</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 19</td>
<td>Brain responsivity in PTSD</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Sept 22</td>
<td>Cumulative life stress and executive function</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 24</td>
<td>Test 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 26</td>
<td>What genes do and their responses</td>
<td>Ch 6 & 7 (Rutter)</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Sept 29</td>
<td>What genes do cont’d</td>
<td></td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 1</td>
<td>Gene response to traumatic experience</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 3</td>
<td>Gene responses in the brain to chronic stress</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Oct 6</td>
<td>Susceptibility genes in behavior</td>
<td>Ch 8 (Rutter)</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 8</td>
<td>Genotype and attachment behavior</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Oct 10</td>
<td>Genotype and learned behavior</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 13</td>
<td>Genotype and prosocial decision making</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Oct 15</td>
<td>Test 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 17</td>
<td>Gene-environment interactions</td>
<td>Ch 9-11 (Rutter)</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 22</td>
<td>5HTT GxE (adolescent emotional problems)</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Oct 24</td>
<td>Crf1 GxE (adult depression)</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 27</td>
<td>Bdnf GxE (attention problems)</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Oct 29</td>
<td>COMT GxE</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Oct 31</td>
<td>Telomeres</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Nov 3</td>
<td>Childhood adversity and cellular aging</td>
<td>Sakai Resource</td>
<td>1. 2. 3.</td>
</tr>
<tr>
<td>Nov 5</td>
<td>Test 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 7</td>
<td>Epigenetics to understand GxE interactions</td>
<td>Dr. Roth</td>
<td></td>
</tr>
<tr>
<td>Nov 10</td>
<td>Epigenetics of maternal behavior</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Nov 12</td>
<td>Ghosts in your genes (Assignment 2)</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Nov 14</td>
<td>Writing assignment lab</td>
<td>Dr. Roth</td>
<td></td>
</tr>
<tr>
<td>Nov 17</td>
<td>Writing assignment lab</td>
<td>Dr. Roth</td>
<td></td>
</tr>
<tr>
<td>Nov 19</td>
<td>Transgenerational epigenetics (Assignment 3)</td>
<td>Sakai Resource</td>
<td>Dr. Roth</td>
</tr>
<tr>
<td>Nov 21</td>
<td>Diet and epigenome</td>
<td>Sakai Resource</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Writing assignment due</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>Nov 24</td>
<td>TSST and epigenetic marking of genome</td>
<td>Sakai Resource</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benefits of exercise through epigenetics</td>
<td>Sakai Resource</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>Nov 26</td>
<td>Thanksgiving Holiday- no classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 28</td>
<td>Thanksgiving Holiday- no classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 1</td>
<td>Epigenetics and GxE</td>
<td>Sakai Resource</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>Dec 3</td>
<td>Test 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>